Tm³⁺/Dy³⁺ 共掺铋酸盐玻璃的 1.47 μm 宽带发光

金文田1***,赵国营1*,徐玲芝¹,邱娟¹,侯京山¹,刘玉峰¹,房永征^{1**},廖梅松²,胡丽丽²

2中国科学院上海光学精密机械研究所强激光材料重点实验室,上海 201800

摘要 采用高温熔融法制备了 Tm³⁺/Dy³⁺共掺杂铋酸盐玻璃样品。利用样品的差热分析曲线、拉曼光谱、红外透 过光谱、吸收光谱、荧光光谱和荧光衰减曲线,对 800 nm 激光二极管抽运下样品的 1.47 μm 宽带发光特性进行了 研究。研究结果表明,制备的铋酸盐玻璃具有良好的热稳定性、较低的声子能量和较高的红外透过率。当 Dy³⁺的 摩尔分数为 0.3%时,实现了对 Tm³⁺的1.47 μm发光的敏化增强,其荧光谱线的半峰全宽为 118 nm。计算得到 1.47 μm发光的最大受激发射截面为 4.37×10^{-21} cm²,光纤放大品质因子为 5.31×10^{-26} cm³。

关键词 材料;铋酸盐玻璃;宽带近红外发光;铥镝共掺杂;光纤放大器

中图分类号 TQ171 **文献标识码** A

doi: 10.3788/CJL201845.0903002

1.47 µm Broadband Emission of Tm³⁺/Dy³⁺ Co-Doped Bismuth Glass

Jin Wentian^{1***}, Zhao Guoying^{1*}, Xu Lingzhi¹, Qiu Juan¹, Hou Jingshan¹, Liu Yufeng¹, Fang Yongzheng^{1**}, Liao Meisong², Hu Lili²

¹School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China;

²Key Laboratory of Materials for High Power Laser, Shanghai Institute of Optics and Fine Mechanics,

Chinese Academy of Sciences, Shanghai 201800, China

Abstract The samples of the Tm³⁺/Dy³⁺ co-doped bismuth glasses are successfully prepared by the conventional high temperature melt-quenching method. By means of the differential scanning calorimetry curves, Raman spectra, absorption spectra, infrared transmittance spectra, fluorescence spectra and fluorescence decay curves of the samples, the 1.47 μ m broadband emission properties of the samples pumped by 800 nm laser diode (LD) are investigated. The results show that, the prepared bismuth glasses have a good thermal stability, a low phonon energy and a high infrared transmissivity. When the mole fraction of Dy³⁺ is 0.3%, the sensitivity enhancement of the 1.47 μ m emission of Tm³⁺ is achieved and the full-width at half-maximum of the fluorescence spectrum is 118 nm. The calculated maximum stimulated emission cross section of 1.47 μ m emission is 4.37×10^{-21} cm² and the figure of merit for the fiber amplification is 5.31×10^{-26} cm³.

Key words materials; bismuth glass; broadband near-infrared emission; Tm^{3+}/Dy^{3+} co-doping; fiber amplifier OCIS codes 160.2750; 070.4790; 230.4480

1 引 言

宽带光纤放大器受到了研究者们的广泛关注, 其可以增大密集波长分复用传输系统的传输容 量^[1-4]。传统二氧化硅基掺铒光纤放大器的带宽较 窄(35 nm),只能在 C 波段(1530~1565 nm)工作, 已不能满足大容量、高速度传输系统的要求^[5]。因 此,研究开发工作在 S(1450~1510 nm)波段的光纤 放大器对扩展光通信带宽具有重要意义^[6]。

Tm³⁺在 1.47 μm 处发光最先受到研究者的关 注^[7-8]。然而,由于其固有的能级特征和发光特 性,Tm³⁺很难实现宽带 1.47 μm 发光。Tm³⁺的上 能级³H₄和下能级³H₅的能带间隙较小,容易产生 无辐射跃迁,因此基质材料应具有较低的声子能

收稿日期: 2018-01-16; 修回日期: 2018-03-28; 录用日期: 2018-05-07

基金项目:国家自然科学基金(51472162,61605115)、上海市扬帆计划(15YF1411800)、上海应用技术大学特聘教授计划(TP2014061)

^{*} E-mail: zhaogy135@126.com; ** E-mail: fyz1003@sina.com; *** E-mail: 349512731@qq.com

量^[9-10]。Tm³⁺的能级跃迁为四能级系统,³H₄能级的寿命显著低于³F₄能级的,难以实现粒子数反转。此外,当Tm³⁺掺杂浓度过大时,还会出现交叉弛豫现象,引起浓度猝灭^[11-12]。为解决上述问题,一般采用1064 nm 抽运光源激发方式,通过上转换过程实现³H₄与³F₄能级间的粒子数反转^[13-14]。另外,通过引入敏化剂离子也可以减少³F₄能级的粒子数,如 Ho^{3+[15]}、Tb^{3+[16]}和Dv^{3+[17]}。

目前,能获得 1.47 μ m 近红外发光的 Tm³⁺掺 杂的基质玻璃材料主要有碲酸盐玻璃^[18],硫系玻 璃^[19]和铋酸盐玻璃^[20]。其中,碲酸盐玻璃具有较 低的声子能量、高折射率和较大的稀土离子溶解度, 但是其稳定性较差,原料成本较高。硫系玻璃具有 较大折射率和较高的透红外界限,但是其稀土离子 溶解度小,对原料纯度要求较高。而铋酸盐玻璃具 有高的折射率、高红外透过率、良好的化学稳定性和 较低的声子能量,是一种优良的稀土离子掺杂基质 材料^[21-22]。高的折射率有利于获得较高的发射截 面,较低的生子能量能够抑制稀土离子激发态能级 的无辐射跃迁,因此本文以铋酸盐玻璃作为基质材 料,通过掺杂 Dy³⁺ 敏化剂离子增强 Tm³⁺ 的 1.47 μ m发光。

2 实验过程

采用传统的熔融法制备了 Tm³⁺/Dy³⁺ 共掺铋 酸盐玻璃,玻璃的组成为 60Bi₂O₃-20SiO₂- $20Ga_2O_3-0.9Tm_2O_3-xDy_2O_3$, 摩尔分数 x = 0, 0.15,0.3。根据 Dy³⁺ 掺杂浓度的不同,玻璃样品 依次命名为 BSTD0、BSTD1 和 BSTD2。实验使用 Bi₂O₃、SiO₂、Ga₂O₃(分析纯)和 Tm₂O₃、Dy₂O₃(质 量分数为 99.99%)作为原料。按化学计量比称量 20g原料,混合均匀后放入刚玉坩埚中,置于温度 为1050 ℃的电阻炉中熔制 20 min, 通入氧气, 熔 制 20 min 以去除样品中的羟基。将得到的澄清熔 融玻璃液倒入预热的不锈钢磨具中,待玻璃液成 型后迅速放入退火炉中退火,在410℃温度下保 温 3 h,然后随炉冷却至室温。将得到的玻璃样品 切割成 20 cm×16 cm×1 cm 的块体,进行双面抛 光以用于光谱测试。样品密度测试采用阿基米德 排水法。吸收光谱测试利用美国 PerkinElmer 公 司生产的 Lambda 900UV/VIS/NIR 型分光光度 计。发射光谱测试利用英国爱丁堡公司生产的 FLS920型光谱仪。所有测试均在室温下进行。

3 结果与讨论

3.1 热稳定性分析

图 1 所示为实验测得的不掺稀土离子的铋酸盐 玻璃样品的差热扫描(DSC)曲线,测试温度范围为 400~550 ℃。由 DSC 曲线可知,铋酸盐玻璃样品 的玻璃化转变温度 T_g 和析晶起始温度 T_x 分别为 511 ℃和 722 ℃。通常用参数 $\Delta T(T_x-T_g)$ 的大小 来衡量玻璃样品的热稳定性能^[23]。 ΔT 的值越大, 玻璃样品的热稳定性能越好,拉制光纤时的可操作 温度范围越广。由 DSC 曲线可知,所研制的铋酸盐 玻璃的 ΔT 为 211 ℃,高于报道的碲酸盐玻璃 (171 ℃)^[3]和铋酸盐玻璃(88 ℃)^[21],说明所研制的 铋酸盐玻璃具有良好的热稳定性能,有利于光纤 拉制。

图 1 铋酸盐玻璃样品的 DSC 曲线 Fig. 1 DSC curve of bismuth glass sample

3.2 拉曼光谱和红外透过光谱

图 2 所示为不掺稀土离子的铋酸盐玻璃样品的 拉曼光谱,可以看出,谱线有 3 个振动峰,峰值波数 分别位于 135,400,890 cm⁻¹。其中,135 cm⁻¹的峰 由[BiO₆]八面体和[BiO₃]多面体中 Bi³⁺的振动产 生^[24],400 cm⁻¹的峰由[BiO₆]八面体中 Bi—O—Bi 键振动产生^[25],890 cm⁻¹的峰由[SiO₄]四面体中的 Si—O 键和[BiO₃]多面体中 Bi—O 键的伸缩振动 产生^[26]。另外,位于高频区域的 890 cm⁻¹振动峰的 强度较小,而位于低频区域的 135 cm⁻¹峰和 400 cm⁻¹峰的强度较大,表明所研制的铋酸盐玻璃 具有较低的声子能量,这能有效地减少稀土离子激 发态能级的无辐射跃迁。

图 3 所示为不掺稀土离子的铋酸盐玻璃的红外透过光谱,可以看出,玻璃样品在 2000~4000 cm⁻¹范围内具有较高的透过率,最高达到 80%。3300~ 3630 cm⁻¹范围内的透过率明显下降,这是因为存 在于玻璃中的羟基对 3 μm 光具有很强的吸收。羟

Fig. 3 Infrared transmittance spectrum of glass sample 基的含量可以用羟基的摩尔吸收系数 α_{OH}-^[27]来衡量,其表达式为

$$\alpha_{\rm OH^{-}} = -\ln(T_{\rm b}/T')/l,$$
 (1)

式中 T_b 为基线处(4000 cm⁻¹)的透过率,T'为羟基 吸收波段的最小透过率,l为样品的厚度。通过计 算得到玻璃样品的羟基吸收系数为 0.434 cm⁻¹,小 于报道的碲酸盐玻璃^[3]和氟磷酸盐玻璃的^[28],说明 制备的铋酸盐玻璃具有较低的羟基含量。较低的羟 基含量能减少稀土离子向羟基的能量传递,提高稀 土离子发光的量子效率和离子间的能量传递效率。

3.3 吸收光谱

Tm³⁺/Dy³⁺ 共掺铋酸盐玻璃样品在 600~ 2000 nm范围内的吸收光谱如图 4 所示,可以看出, 吸收光谱共有 7 个吸收峰,中心波长分别位于 686, 794,896,1087,1210,1272,1690 nm,对应于 Tm³⁺、 Dy³⁺基态到相应激发态的跃迁。随着 Dy³⁺掺杂浓 度的增大,样品吸收峰的峰位和谱线形状未发生变 化,这说明 Tm³⁺和 Dy³⁺均匀分布在玻璃基体内, 未发生团聚现象。研制的玻璃样品在 800 nm 处有 强的吸收峰,表明样品可以有效地被 800 nm 激光 二极 管(LD)激发。另外,根据 Judd-Ofelt 理 论^[29-30],计算得到 Tm³⁺的³H₄→³F₄ 能级跃迁的辐 射跃 迁 几 率 为 167. 35 s⁻¹,高 于 锗 酸 盐 玻 璃

Fig. 4 Absorption spectra of glass samples

的(140 s⁻¹),这有助于获得强的近红外发光。

3.4 荧光性能

图 5 所示为玻璃样品在 800 nm LD 抽运下的 发射光谱。可以看出,发射光谱有 1.47 µm 和 1.8 μ m两个发射峰,分别对应 Tm³⁺的³H₄→³F₄ 和³F₄→³H₆能级的跃迁。随着 Dy³⁺浓度的增大,1.47 μm发光强度显著增大, 而 1.8 μm 发光强度先 减小然后增大。这是因为掺入 Dy3+ 后, Tm3+:3F4 能级的能量通过共振的方式传递给 Dy3+:6H11/2能 级,Tm³⁺自身的电子跃迁回基态能级,造成其³H₄ $\pi^{3}F_{4}$ 能级间的粒子数反转,从而增强了1.47 μ m发 光,减弱了 1.8 µm 发光。继续增大 Dy3+ 的浓度, Tm³⁺与Dy³⁺之间的距离变短,Dy³⁺:⁶F_{5/2}能级到 Tm^{3+} : ³H₄ 能级的共振能量传递增多, 增强了 1.47 μm和 1.8 μm 发光。当 Dy³⁺ 的摩尔分数为 0.3%时,1.47 μm 发光强度达到最大,半峰全宽 (FWHM)达到 118 nm,高于碲锌酸盐玻璃 (106 nm)^[31]、碲钨酸盐玻璃(102 nm)^[32]和硫系玻 璃(84 nm)^[33]。大的 FWHM 有利于获得较大的增 益系数。

图 6 所示为 Tm³⁺ 的 1.47 µm 与 1.8 µm 发射

峰的积分强度比,可以看出,在保持 Tm^{3+} 掺杂浓度 不变的情况下,随着玻璃样品中 Dy^{3+} 掺杂浓度的增 大,1.47 μ m与 1.8 μ m 发光的积分强度比显著增大, 从 0.08 增大到了 0.85;1.47 μ m 发光的积分强度从 1.8 增大到 23.5,增大了 13 倍。因此,通过掺杂适当 浓度的 Dy^{3+} ,能够实现 Tm^{3+} 的³ H₄ 与³ F₄ 能级间 的粒子数反转,有效地增强 1.47 μ m 发光。

图 6 1.47 μm 与 1.8 μm 发射峰的积分强度比 Fig. 6 Integrated intensity ratio between 1.47 μm and 1.80 μm emission peaks

3.5 受激发射截面

受激发射截面 σ_{e} 可根据 Fuchtbauer-Ladenburg公式^[34]计算:

$$\sigma_{\rm e} = \frac{\lambda^4 A_{\rm rad}}{8\pi c n^2} \times \frac{\lambda I(\lambda)}{\left[\lambda I(\lambda) \,\mathrm{d}\lambda\right]},\tag{2}$$

式中 λ 为波长,*c* 为真空中的光速,*n* 为玻璃的折射 率,*I*(λ)为发射峰强度,*A*_{rad}为自发辐射跃迁几率。 图 7 所示为 BSTD2 样品的 1.47 μ m 发光的受激发 射截面,计算得到 Tm³⁺的³H₄→³F₄ 能级跃迁的峰 值发射截面 σ_e^{peak} 为 4.37×10⁻²¹ cm²。带宽品质定 义为峰值受激发射截面与发射峰 FWHM 的乘积 (*F*_{WHM}× σ_e^{peak}),是评价光纤放大器增益性能的重要 指标,大的带宽品质因子表明光纤放大器具有更好 的宽带放大性能^[35]。计算得到的 BSTD2 样品 1.47 μ m发光的 FWHM、峰值受激发射截面和带宽 品质因子,以及其他玻璃体系的值见表 1。可以看 出,实验制备的 Tm³⁺/Dy³⁺共掺铋酸盐玻璃具有高 的峰值发射截面和带宽品质因子,在 S 波段的光纤 放大器中具有潜在的应用价值。

3.6 荧光衰减曲线和能量传递机理

BSTD0 和 BSTD2 样品 Tm^{3+} 的³ F₄ 能级的荧 光衰减曲线如图 8 所示。可以看出,与 Tm^{3+} 单掺 样品相比, Tm^{3+}/Dy^{3+} 共掺样品的 $Tm^{3+}:{}^{3}F_{4}$ 能级 的荧光寿命有所降低,说明存在 $Tm^{3+}:{}^{3}F_{4} \rightarrow$ Dy³⁺:⁶ H_{11/2}的能量传递过程。通常,能量传递效率

图7 D31D2 杆面的及别截面

Fig. 7 Emission cross section of BSTD2 sample

表 1 不同玻璃基质的 FWHM、峰值受激发射截面 和带宽品质因子的对比

Table 1 Comparison among FWHM, peak emission cross sections and figure of merit for bandwidth in different glass hosts

Glass	FWHM /	$\sigma_{ m e}^{ m peak}$ /	$F_{ m WHM} imes \sigma_{ m e}^{ m peak}$ /
	nm	(10^{-21} cm^3)	2)(10 ⁻²⁶ cm ³)
Proposed glass	118	4.37	5.31
Chalcogenide glass ^[33]	84	4.34	3.64
Zinc tellurite glass ^[31]	106	4.0	4.24
TeO ₂ -WO ₃ -PbO glass ^[32]	102	4.0	4.08
ΓeO_2 - K_2O -La ₂ O ₃ glass ^[36]	124	3.7	4.36
Tungsten tellurite glass ^[37]	110	3.7	4.07
Bismuth tellurite glass ^[38]	109	3.5	3.81
Germinate glass ^[39]	113	3.5	3.95
Gallate glasses ^[40]	122	3.34	4.07
ZBLAN ^[41]	76	1.8	1.37

η^[42]的计算公式为

$$\eta = 1 - \frac{\tau}{\tau_0}, \qquad (3)$$

式中 τ 和 τ_0 分别为 BSTD2 和 BSTD0 样品中 Tm³⁺:³F₄能级的荧光寿命。通过测试得到 τ 和 τ_0 分别为 1.63 ms 和 1.76 ms。由(3)式计算得到, Tm³⁺:³F₄→Dy³⁺:⁶H_{11/2}的能量传递效率为7.39%。 较低的能量传递效率说明 1.47 μ m 发光的增强得益 于其他的能量传递路径。

图 9 所示为 Tm³⁺ 与 Dy³⁺ 间的能量传递过程。 在 800 nm LD 的抽运下, Tm³⁺ 的基态³H₆能级的电 子受到激发跃迁到激发态³H₄ 能级, 然后通过辐射 跃迁迅速跃迁至³F₄ 能级, 产生 1.47 µm 的近红外 发光。处于激发态³F₄ 能级的电子跃迁回基态, 产 生 1.8 µm 的发光。共掺入 Dy³⁺后, 可能的能量传 递过程: Tm³⁺:³F₄ + Dy³⁺:⁶ H_{15/2} → Tm³⁺:³ H₆ + Dy³⁺:⁶ H_{11/2} (记为 ET1), Tm³⁺:³H₄ + Dy³⁺: ⁶ H_{15/2} ↔ Tm³⁺:³H₆ + Dy³⁺:⁶ F_{5/2} (记为 ET2), 两过

图 8 Tm³⁺的³F₄能级的荧光衰减曲线

Fig. 8 Fluorescence decay curves of ³F₄ levels of Tm³⁺

程均为共振能量传递。ET1 过程有利于实现 1.47 μ m发光上下能级的布居数反转,同时该过程 也是 1.8 μ m发光减弱的主要原因。Tm³⁺、Dy³⁺均 在 800 nm 抽运光处有较强的吸收,因此其共振能 量传递效率较高。而观察到的显著的 1.47 μ m 发光 增强现象,可能是 ET2 过程中 Dy³⁺向 Tm³⁺较高的 能量传递效率导致的。

图 9 Tm^{3+} 与 Dy^{3+} 间的能量传递过程 Fig. 9 Energy transfer process between Tm^{3+} and Dy^{3+}

4 结 论

采用熔融法制备了 Tm³⁺/Dy³⁺ 共掺铋酸盐玻 璃,研究了玻璃样品的热稳定性及 Dy³⁺ 浓度对 Tm³⁺的 1.47 μm 发光性能的影响。计算了 Tm³⁺ 的³H₄→³F₄ 能级跃迁的受激发射截面和带宽品质 因子。结果表明,制备的 Tm³⁺/Dy³⁺ 共掺铋酸盐玻 璃具有优良的热稳定性能、较高的红外透过率和较 低的声子能量,在 800 nm LD 激发下,能产生较强 的宽带 1.47 μm 发光,FWHM 达到 118 nm。随着 Dy³⁺浓度的增大,1.47 μm 发光显著增强。当 Dy³⁺ 的摩尔分数为 0.3%时,玻璃样品 1.47 μm 发光的积 分强度是未掺 Dy³⁺时的 13 倍,峰值受激发射截面 为 4.37×10^{-21} cm², 带 宽 品 质 因 子 为 5.31×10^{-26} cm³。研究结果表明,所制备的 Tm³⁺/Dy³⁺ 共掺铋酸盐玻璃在 S 波段光纤放大器中具有潜在的 应用价值。

参考文献

- [1] Zhou B, Lin H, Pun E Y-B. Tm³⁺-doped tellurite glasses for fiber amplifiers in broadband optical communication at 1. 20 μm wavelength region [J]. Optics Express, 2010, 18(18): 18805-18810.
- [2] Zhou B, Pun E Y-B. Broadband near-infrared photoluminescence and energy transfer in Tm³⁺/ Er³⁺-codoped low phonon energy gallate bismuth lead glasses[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 285404.
- [3] Rivera V A G, El-Amraoui M, Ledemi Y, et al. Expanding broadband emission in the near-IR via energy transfer between Er³⁺-Tm³⁺ co-doped tellurite-glasses[J]. Journal of Luminescence, 2014, 145(1): 787-792.
- [4] Son D H, Kim B H, Lee S H, *et al.* Ultrabroadband near-infrared emission in bismuth borosilicate glasses incorporated with Er^{3+} , Tm^{3+} , and Yb^{3+} ions[J]. Journal of Non-Crystalline Solids, 2014, 402(13): 106-110.
- [5] Tanabe S. Rare-earth-doped glasses for fiber amplifiers in broadband telecommunication[J]. Comptes Rendus Chimie, 2002, 5(12): 815-824.
- [6] Tetsuro K, Takashi Y, Tomoki S, et al. Upconversion pumped thulium-doped fluoride fiber amplifier and laser operating at 1.47 μm [J]. IEEE Journal of Quantum Electronics, 1995, 31 (11): 1880-1889.
- [7] Wang J, Lincoln J R, Brocklesby W S, et al. Fabrication and optical properties of lead-germanate glasses and a new class of optical fibers doped with Tm³⁺ [J]. Journal of Applied Physics, 1993, 73(12): 8066-8075.
- [8] Zhang Z H, Ren J, Yan Q Q, et al. Mutually enhanced near infrared emission of Dy³⁺ and Tm³⁺ co-doped chalcohalide glasses[J]. Journal of Luminescence, 2013, 141(17): 76-79.
- [9] Sanz J, Cases R, Alcalá R. Optical properties of Tm³⁺ in fluorozirconate glass [J]. Journal of Non-Crystalline Solids, 1987, 93(2): 377-386.
- [10] Reisfeld R, Boehm L, Spector N. Multiphonon relaxation rates and fluorescence lifetimes for Tm³⁺ in four oxide glasses [J]. Chemical Physics Letters, 1977, 49(2): 251-254.
- [11] Han Y S, Lee D J, Heo J. 1. 48 µm emission

properties and the cross-relaxation mechanism in chalcohalide glass doped with Tm³⁺ [J]. Journal of Non-Crystalline Solids, 2003, 321(3): 210-216.

- [12] Balda R, Fernández J, García-Revilla S, et al. Spectroscopy and concentration quenching of the infrared emissions in Tm³⁺-doped TeO₂-TiO₂-Nb₂O₅ glass [J]. Optics Express, 2007, 15 (11): 6750-6761.
- [13] Komukai T, Yamamoto T, Sugawa T, et al. Efficient upconversion pumping at 1. 064 μm of Tm³⁺-doped fluoride fibre laser operating around 1.47 μm[J]. Electronics Letters, 1992, 28(9): 830-832.
- [14] Percival R M, Szebesta D, Williams J R. Highly efficient 1.064 μm upconversion pumped 1.47 μm thulium doped fluoride fibre laser [J]. Electronics Letters, 1994, 30(13): 1057-1058.
- [15] Taylor E R, Ng L N, Sessions N P, et al. Spectroscopy of Tm³⁺-doped tellurite glasses for 1470 nm fiber amplifier[J]. Journal of Applied Physics, 2002, 92(1): 112-117.
- [16] Shi D M, Zhang Q Y. Enhanced 1.47 μm emission and lowered upconversion of Tm³⁺-doped gallategermanium-bismuth-lead glass by codoping rare earths [J]. Journal of Applied Physics, 2008, 104(12): 123517.
- [17] Cho D H, Choi Y G, Kim K H. Energy transfer from Tm³⁺ :³F₄ to Dy³⁺ :⁶ H_{11/2} in oxyfluoride tellurite glasses[J]. Chemical Physics Letters, 2000, 322(3): 263-266.
- [18] Chung W J, Choi Y G. 1.4 μm emission properties and local environments of Tm³⁺ ions in tellurite glass modified with MoO₃ [J]. Journal of Luminescence, 2010, 130(11): 2175-2179.
- [19] Guo H T, Liu L, Wang Y Q, et al. Host dependence of spectroscopic properties of Dy³⁺doped and Dy³⁺, Tm³⁺-codped Ge-Ga-S-CdI₂ chalcohalide glasses [J]. Optics Express, 2009, 17(17): 15350-15358.
- [20] Man S Q, Wong S F, Pun E Y-B, et al. 1.47-μm emission and multiphonon relaxation of Tm³⁺ ions in potassium bismuth gallate glasses [J]. Journal of the Optical Society of America, 2004, 21(2): 313-317.
- [21] Li K F, Fan H Y, Zhang G, et al. Broadband nearinfrared emission in Er³⁺-Tm³⁺ co-doped bismuthate glasses[J]. Journal of Alloys and Compounds, 2011, 509(6): 3070-3073.
- [22] Wang T, Fan H Y, Zhao G Y, et al. Optical properties of Yb³⁺ doped bismuth glasses[J]. Chinese Journal of Lasers, 2017, 44(9): 0903001. 汪韬,范慧艳,赵国营,等. Yb³⁺掺杂铋酸盐玻璃的

发光特性[J].中国激光, 2017, 44(9): 0903001.

- [23] Hrubý A. Evaluation of glass-forming tendency by means of DTA[J]. Czechoslovak Journal of Physics, 1972, 22(11): 1187-1193.
- [24] Baia L, Stefan R, Kiefer W, et al. Structural characteristics of B₂O₃-Bi₂O₃ glasses with high transition metal oxide content[J]. Journal of Raman Spectroscopy, 2005, 36(3): 262-266.
- [25] Gao G J, Hu L L, Fan H Y, et al. Effect of Bi₂O₃ on physical, optical and structural properties of boron silicon bismuthate glasses[J]. Optical Materials, 2009, 32(1): 159-163.
- [26] Pan Z, Henderson D O, Morgan S H. Vibrational spectra of bismuth silicate glasses and hydrogeninduced reduction effects[J]. Journal of Non-Crystalline Solids, 1994, 171(2): 134-140.
- [27] Ehrmann P R, Carlson K, Campbell J H, et al. Neodymium fluorescence quenching by hydroxyl groups in phosphate laser glasses[J]. Journal of Non-Crystalline Solids, 2004, 349(6): 105-114.
- [28] Tian Y, Xu R R, Guo Y Y, et al. Mid-infrared luminescence and energy transfer of Dy³⁺/Tm³⁺ doped fluorophosphate glass[J]. Journal of Luminescence, 2012, 132(8): 1873-1878.
- [29] Judd B R. Optical absorption intensities of rare-earth ions[J]. Physical Review, 1962, 127(3): 750-761.
- [30] Ofelt G S. Intensities of crystal spectra of rare-earth ions[J]. The Journal of Chemical Physics, 1962, 37 (3): 511-520.
- [31] Sasikala T, Rama Moorthy L. Photoluminescence properties of singly doped Tm³⁺ and co-doped Tm³⁺ / Tb³⁺ ions in tellurite glasses[J]. Journal of Molecular Structure, 2014, 1076: 529-534.
- [32] Balda R, Lacha L M, Fernández J, *et al.* Spectroscopic properties of the 1.4 μ m emission of Tm³⁺ ions in TeO₂-WO₃-PbO glasses [J]. Optics Express, 2008, 16(16): 11836-11846.
- [33] Yang Z Y, Luo L, Chen W. The 1.23 and 1.47 μ m emissions from Tm³⁺ in chalcogenide glasses [J]. Journal of Applied Physics, 2006, 99(7): 076107.
- [34] Weber M J, Ziegler D C, Angell C A. Tailoring stimulated emission cross sections of Nd³⁺ laser glass: Observation of large cross sections for BiCl₃ glasses [J]. Journal of Applied Physics, 1982, 53(6): 4344-4350.
- [35] Qian G Q, Tang G W, Qian Q, et al. Study on midinfrared spectral properties of Ho³⁺/Yb³⁺ co-doped fluorogermanate glasses[J]. Acta Optica Sinica, 2016, 36(6): 0616002.
 (钱国权, 唐国武, 钱奇, 等. Ho³⁺/Yb³⁺共掺杂氟锗

酸盐玻璃中红外光谱性质研究[J].光学学报,2016,

36(6): 0616002.

- [36] Zhou D C, Wang R F, Yang Z W, et al. Spectroscopic properties of Tm^{3+} doped $TeO_2-R_2 O-La_2 O_3$ glasses for 1. 47 μm optical amplifiers [J]. Journal of Non-Crystalline Solids, 2011, 357(11/12/13): 2409-2412.
- [37] Chen G, Zhang Q, Cheng Y, et al. Spectroscopic properties and energy transfer of Tm³⁺/Ho³⁺codoped TeO₂-WO₃-ZnO glasses for 1. 47 μm amplifier[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 72(4): 734-737.
- [38] Lin H, Wang X Y, Lin L, et al. Near-infrared emission character of Tm³⁺-doped heavy metal tellurite glasses for optical amplifiers and 1.8 μm infrared laser [J]. Journal of Physics D: Applied Physics, 2007, 40(12): 3567-3572.

- [39] Balda R, Lacha L M, Fernández J, et al. Optical spectroscopy of Tm³⁺ ions in GeO₂-PbO-Nb₂O₅ glasses[J]. Optical Materials, 2005, 27(11): 1771-1775.
- [40] Lin H, Wang X Y, Li C M, et al. Near-infrared emissions and quantum efficiencies in Tm³⁺-doped heavy metal gallate glasses for S- and U-band amplifiers and 1.8 μm infrared laser[J]. Journal of Luminescence, 2008, 128(1): 74-80.
- [41] Naftaly M, Shen S X, Jha A. Tm³⁺-doped tellurite glass for a broadband amplifier at 1. 47 μm [J]. Applied Optics, 2000, 39(27): 4979-4984.
- [42] Sheng Q C, Wang X L, Chen D P. Enhanced broadband 2. 0 μm emission and energy transfer mechanism in Ho-Bi co-doped borophosphate glass[J]. Journal of the American Ceramic Society, 2012, 95(10): 3019-3021.